Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds.

نویسندگان

  • C M Mistretta
  • L F Haus
چکیده

Gustatory papillae are complex organs that are composed of 1) an epithelium, 2) specialized sensory cells within the epithelium (the taste buds), 3) a broad connective core, and 4) sensory innervation. During papilla development, cells in the various tissue compartments must divide, aggregate, detach, migrate, and reaggregate in relation to each other, but factors that regulate such steps are poorly understood and have not been extensively studied. All of these processes potentially require participation of the extracellular matrix. Therefore, we have studied temporal and spatial patterns of immunoreactivity for two extracellular matrix molecules, tenascin and laminin, in the developing fungiform and circumvallate papillae of fetal, perinatal, and adult sheep tongue. To determine relations of tenascin and laminin to sensory innervation, we used an antibody to growth-associated protein (GAP-43) to label growing nerves. Immunocytochemical distributions of tenascin and laminin alter during development in a manner that reflects morphogenesis rather than histologic boundaries of the taste papillae. In early fungiform papillae, tenascin immunoreactivity is very weak within the mesenchyme of the papilla core. However, there is a subsequent shift to an intense, restricted localization in the apical papilla core only--directly under taste bud-bearing regions of the papilla epithelium. In early circumvallate papillae, tenascin immunoreactivity is patchy within the papilla core and within the flanking, nongustatory papillae. Later, immunoreactivity is restricted to the perimeter of the central papilla core, under epithelium that contains developing taste buds. In fungiform and circumvallate papillae, the shift in tenascin immunolocalization is associated with periods of taste bud formation and multiplication within the papilla epithelium and with extensive branching of the sensory innervation in the papilla apex. Laminin immunoreactivity, although it is continuous throughout the basement membrane of general lingual epithelium, is interrupted in the epithelial basement membrane of early fungiform and circumvallate papillae in regions where taste buds are forming. The breaks are large in young fetuses, when taste buds first develop, and are evidenced later as punctate disruptions. Heparan sulfate proteoglycan immunoreactivity confirms that these are basement membrane discontinuities. GAP-43 label coincides with innervation of the papilla core and is most extensive in regions where tenascin immunoreactivity is weak or absent. GAP-43 immunoreactivity is also found in early taste buds: Later, it is extensive within more mature multiple taste buds, presumably in relation to synaptogenesis. We propose that tenascin has a role in promoting deadhesion of cells in the papilla epithelium during periods of taste bud formation and multiplication. Discontinuities in the epithelial basement membrane under developing taste buds, indicated with laminin and heparan sulfate proteoglycan immunoreactivity, may interact to facilitate taste bud morphogenesis and multiplication, to permit access of papilla innervation to the forming taste buds, and/or to allow epithelial/mesenchymal interactions during papilla and taste bud development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia.

Taste buds on the mammalian tongue are confined to the epithelium of three types of gustatory papillae: the fungiform, circumvallate, and foliate. The gustatory papillae are composed of an epithelium that covers a broad connective tissue core, with extensive innervation to taste bud and nongustatory epithelial locations. Although the temporal sequence of gustatory papilla development is known f...

متن کامل

Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae

ATP and its metabolites are important for taste signaling in taste buds, and thus a clearance system for them would play critical roles in maintenance of gustatory function. A previous report revealed that mRNAs for ecto-5'-nucleotidase (NT5E) and prostatic acid phosphatase (PAP) were expressed by taste cells of taste buds, and NT5E-immunoreactivity was detected in taste cells. However, there w...

متن کامل

Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.

Sensory ganglia that innervate taste buds and gustatory papillae (geniculate and petrosal) are reduced in volume by about 40% in mice with a targeted deletion of the gene for brain-derived neurotrophic factor (BDNF). In contrast, the trigeminal ganglion, which innervates papillae but not taste buds on the anterior tongue, is reduced by only about 18%. These specific alterations in ganglia that ...

متن کامل

Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae.

Taste buds on the anterior part of the tongue develop in conjunction with epithelial-mesenchymal specializations in the form of gustatory (taste) papillae. Sonic hedgehog (Shh) and Bone Morphogenetic Protein 4 (BMP4) are expressed in developing taste papillae, but the roles of these signaling molecules in specification of taste bud progenitors and in papillary morphogenesis are unclear. We show...

متن کامل

Role of brain-derived neurotrophic factor in target invasion in the gustatory system.

Brain-derived neurotrophic factor (BDNF) is a survival factor for different classes of neurons, including gustatory neurons. We have studied innervation and development of the gustatory system in transgenic mice overexpressing BDNF under the control of regulatory sequences from the nestin gene, an intermediate filament gene expressed in precursor cells of the developing nervous system and muscl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 364 3  شماره 

صفحات  -

تاریخ انتشار 1996